5 research outputs found

    SAFER: Safe Collision Avoidance using Focused and Efficient Trajectory Search with Reinforcement Learning

    Full text link
    Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work we present SAFER, an efficient and effective collision avoidance system that is able to improve safety by correcting the control commands sent by an operator. It combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn an effective corrective control action that is used in a focused search for collision-free trajectories, and to reduce the frequency of triggering automatic emergency braking. This novel setup enables the RL policy to learn safely and directly on mobile robots in a real-world indoor environment, minimizing actual crashes even during training. Our real-world experiments show that, when compared with several baselines, our approach enjoys a higher average speed, lower crash rate, less emergency intervention, smaller computation overhead, and smoother overall control.Comment: Accepted in IEEE International Conference on Automation Science and Engineering (CASE), 202

    Human Following in Mobile Platforms with Person Re-Identification

    Full text link
    Human following is a crucial feature of human-robot interaction, yet it poses numerous challenges to mobile agents in real-world scenarios. Some major hurdles are that the target person may be in a crowd, obstructed by others, or facing away from the agent. To tackle these challenges, we present a novel person re-identification module composed of three parts: a 360-degree visual registration, a neural-based person re-identification using human faces and torsos, and a motion tracker that records and predicts the target person's future position. Our human-following system also addresses other challenges, including identifying fast-moving targets with low latency, searching for targets that move out of the camera's sight, collision avoidance, and adaptively choosing different following mechanisms based on the distance between the target person and the mobile agent. Extensive experiments show that our proposed person re-identification module significantly enhances the human-following feature compared to other baseline variants
    corecore